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Abstract 

We describe a new platform for system dynamics modeling that supports detailed and object 

oriented modeling while preserving attractive features of existing tools, including a completely 
declarative language with a graphical representation. New concepts supporting this platform 

include collections of entities, attributes, relationships, aggregation and allocation functions, and 
actions, which are presented with examples. The design facilitates modularity and collaboration, 

provides a more natural description of detail than arrays, and solves sparse matrix problems. It 

has application to both traditional system dynamics, with modular sectors, and to agent based 
modeling. 
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Introduction 

The authors believe that the emerging needs for modeling large and complex systems can best 
be addressed through a new modeling language and platform that is based on system dynamics 

but that is designed from the ground up to support object oriented modeling.  This paper 
provides an overview of such a platform. Before we proceed, we discuss some of the strengths 

and weaknesses of existing approaches. 

Strengths of Traditional SD Tools 

System dynamics modeling and the tools that support it offer unique advantages for building 

simulation models of large and complex systems. These include, 

 Use of graphical descriptions, with a limited number of core abstractions, to promote 

inspection and peer interaction. 

 Useful variable names and documentation fields. 

 Declarative languages with automatic renaming. 

 Separation of model structure from data and output (unlike spreadsheets). 

 Productive debugging from visibility of full model state and Causal Tracing™. 

 Good testing habits and automated testing tools, as in Vensim’s Reality Check™. 

 Easy syntax and unit checking. 

The Challenges Presented by Complex Systems 

In Business Dynamics, Sterman (2000, Chapter 22) discusses “Challenges for the Future”.  He 
calls for improving group modeling, speeding the process, and integrating modeling 

methodologies.  He also cites the importance of linking models with each other and with 

potentially large databases.  Modelers have increasingly bumped up against the limits of 
traditional system dynamics in a number of areas: 

 Communication of results with beauty and clarity that can compete with other media. 

 Management of detail, including, 

o Situations in which the combinatorics of overlapping states make it difficult to 

draw sensible stock-flow diagrams a priori. 

o Multi-tier relationships that make array syntax arcane and difficult, even for 

experienced modelers. 

o Systems that cannot be accurately aggregated, as in agent based models where 

behavior emerges from granularity at the individual level rather than the 

population level. 

o Sparse matrices that are better represented by lists than by multidimensional 

arrays. 

o Dynamic activation of structure, or creation and deletion of agents. 

 Team model building and reuse of structure across projects, requiring modularity and 

support for source control. 

 End-to-end management of large scale data. 
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 Advanced algorithms requiring parallel or grid computing. 

When tools fail to support these areas, opportunities are missed to reduce costs and increase the 
quality of system dynamics work. 

Limitations of Current System Dynamics Tools 

Ordinary applications of system dynamics tools suffer from some more mundane limitations as 
well. 

Variable names are typically global and must be unique within the model.  This means that the 
variable name must include both the context and the item identification.  For instance, in a 

business model, there may be many separate “Cash” variables.  With an object-oriented 

approach, variable names are only unique within an entity type.  References to variables defined 
in separate objects include the reference name, which increases clarity and simplifies the 

application of modular design principles. 

Replication of structure generally involves either copy/paste/edit, macros or arrays. Copy/paste is 

a manual process and therefore not very flexible. Macros are rather opaque to the user. Arrays 

are a property defined for individual variables, though conceptually dimensions are generally a 
property of a subsystem. Arrays become arduous to use when they must be mapped across 

subsystems with differing levels of detail. Arrays become especially awkward if they are used to 
model  items that are dynamically created and deleted; the result is large static arrays, very 

complex equations, and slow simulations 

Solutions 

Most of these challenges can be met already through the use of flexible tools based on object 

oriented programming. However, in many cases this foregoes much of the clarity and efficiency 
of SD tools. It also increases cost and shrinks the pool of skilled practitioners, who must 

simultaneously be modelers and programmers. 

Modularity 

Productivity of modelers could be improved by increasing the ability to reuse tested components 

within a model or across projects.  Team modeling is challenged by the difficult task of 
connecting model components, especially when components are being developed by separate 

individuals or teams. 

The software industry has addressed the cost and reusability issue effectively with the 

emergence of object oriented programming and design.  In this paper, we propose that these 
principles be applied to the building of system dynamics models and discuss a platform that 

implements these proposals. 

The desire to reuse model components is not new.  Eberlein and Hines (1996) proposed the use 
of standardized molecules that could speed up implementation.  Tignor (1999), Tignor and 

Myrtveit (2000), and Myrtveit (2000) proposed a variety of object oriented extensions to system 
dynamics implementations.  Logical grouping and hierarchical model building is also important, as 

presented by Eubanks and Yeager (2001).  Bauer and Bodendorf (2006) created a Model 

Composer that would assemble a composite model using components built with Vensim.  
According to Osgood and Tian (2012), modularity is one of the key principles in software 

engineering.  They go on to say that “most System Dynamics modules remain stubbornly 
monolithic”. 
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Agent Detail 

Numerous efforts to combine system dynamics and agent based modeling have been attempted 
due to the unique capabilities offered by each paradigm.   With significant effort, some agent-like 

models have been constructed using system dynamics tools.  Sterman (2000, p. 896) states that 
“There are different simulation methods for agent-based modeling, ranging from simple cellular 

automata to detailed, disaggregate system dynamics models.”   He identified agent-based 

modeling as one of the key areas for advancing the theory of dynamic simulation.  Schieritz and 
Grobler (2003) describe a hybrid model that uses agent-style control structure to instantiate and 

manage small system dynamics models running in Vensim. 

Agent-based modeling provides several capabilities that are not available in traditional system 

dynamics models.  Gilbert and Terna (2000) emphasize the similarities between an “object” and 
an “agent”.  Schieritz (2002) describes integrating system dynamics and agent modeling.   She 

notes that “The drawback of the system dynamics approach in modeling supply networks is the 

fixed structure of a system dynamics model”.  Schieritz and Milling (2003) provide a lengthy 
comparison of system dynamics and agent-based modeling.  The source of dynamics is identified 

as levels (system dynamics) versus events (agent-based modeling).   Although aggregate levels 
provide an adequate representation of many systems, it is clear that the effective study of many 

complex social systems requires the ability to dynamically create and delete agents (or objects or 

entities).   

Behdani (2012) compares system dynamics, discrete event modeling, and agent-based modeling.  

Behdani identifies eight capabilities that appear to favor an agent-based approach.  The first four 
items are the ability to create numerous heterogeneous items, the potential for local interaction, 

nestedness (relationships to sub-components), and adaptiveness.  Although all of these can and 
have been modeled using system dynamics languages, some of these models require contortions 

by the modeling team.  Emergence, self-organization, and co-evolution are heavily dependent on 

the ability of the system dynamics modelers to stretch array-based software far beyond its 
normal range of clarity and efficiency.   

Thus, it appears that the major issues required to integrate agent-type behavior into a system 
dynamics model are the ability to define agents in system dynamics diagrams and to then create 

and delete these agents and to dynamically configure their relationships with other agents and 

the environment.  

The final point noted by Behdani is “Path Dependency”.  In this context, that means the ability to 

use the agent’s history and prior observations as input to decisions and actions.  This capability is 
fully supported by the platform described in this article. 

Lessons from Software Development 

Osgood and Tian (2012) make many recommendations in their paper “15 Things System 
Dynamics can Learn from Software Development”.  The object-oriented paradigm in software 

development significantly improved the generation and application of reusable modules.   Object-
oriented design will also support “Encapsulation and Abstractions by Specification”, “Interface-

Based Development”, and “Mocking”.   These software engineering features establish module 
specifications, separation of those specifications into formal interfaces, and create test modules 

that satisfy the interface and can be used in place of the full module for improved testing or 

development.  
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Entity Based System Dynamics 

The approach we now describe includes several important extensions to the system dynamics 
toolset: 

- Entity type definitions, providing objects or modules 

- Attributes used to identify and categorize individual entities 

- Collections of entities automatically generated and tracked by attribute 

- Aggregation and allocation functions that make one-to-many or many-to-many 

mappings among collections and individual entities 

- References, or special attributes used to connect entities of the same or different types 

- Actions, providing for discrete events like the dynamic creation and deletion of entities 

While these concepts are not part of the familiar lexicon, we expect that they will make modeling 

detail more natural, whether for representing sectors in a traditional flat system dynamics models 
or for agent based modeling. Collections of entities are more natural than arrays, because detail 

is a property of an institution, vehicle, or person, rather than a property of each and every 
equation that describes that entity.  For the advanced modeler, these constructs greatly amplify 

what is possible; for the beginning modeler, none of these constructs need be addressed until 
required. 

The organization of models into component types that correspond to actual structures and 

organizations should help make modeling clients and stakeholders more confident in the 
associated models because the diagrams can correspond directly to familiar concepts.  It is 

furthermore expected that subject matter experts would be able to construct, review, and 
validate portions of models without needing to deal with the entire system.   

The platform design includes a non-procedural language for defining all model components, a 

graphical representation of all model components, and the ability to support object oriented 
system dynamics as well as discrete events and agent-based models. 

Modular Definition Structure 

Building a model of a complex system can be most easily accomplished by building smaller 

models of each type of component that is part of that system.  We refer to these components as 
entity type definitions.   Entities may represent a wide range of components such as physical 

entities, organizations, facilities, products, logical collections, and abstractions.  Typical 

combinations could include: 

- City/Region:  city departments, neighborhoods, power plants, populations, businesses, 

health care providers, agencies, business, schools 

- Company Strategy:  product lines,  markets, consumers, competitors, departments 

Portfolio Planning:  projects, tasks, resource groups, pre-requisites, quality and 

productivity relationships 

Entity Type Definition 

The modeler creates, or reuses from prior work, a separate model definition for each type of 
component in the system. For example, the modeler may define a “customer” type.    These 

entity type definitions are constructed using graphical definition capabilities that support 
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traditional stock and flow diagrams.  Equations are defined in the familiar non-procedural 

structure like that supported by current system dynamics software.  Entity type definitions also 
contain identifiers that can be used to uniquely identify each entity. 

Entity type definitions are stored in separate files.  Thus, it is much easier to manage model 
development by distributed teams.  Alternative entity type definitions may be substituted for each 

other to generate scenarios or to test alternative versions of the model.  Interface specifications 

list the required input variables and identify the output variables that must be supplied to outside 
entities.  

At the start of model execution, entities may be specified by external data sources, making it 
easier to use a model or its components across many separate simulation applications.  For 

instance, a customer entity type might be used in many different applications, each time being 
invoked to create a different number of customers with different properties. The structure of 

entity type definitions makes it easy to load extremely large data sets from databases or from 

files. 

These entity type definitions are intentionally similar to class definitions in an object oriented 

programming language.  This approach supports the key benefits of object oriented design that 
relate to dynamic simulation – without requiring programming expertise.  These key benefits 

include the ability to create and delete entities during a simulation, the ability to override 

equations (methods), and the ability to base an entity type definition on another entity type 
definition (inheritance and multiple inheritance). By defining empty interfaces for entity types, 

teams of users can specify high level interactions among model components that will later be 
completed in parallel. 

Each entity type definition can be defined using system dynamics stock and flow diagrams.  
Figure 1 shows an entity type definition with a diagram and a list of all of its variables. 
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Figure 1 

By referencing this definition, the model can create, delete, merge, or split entities during model 

execution. 

Attributes 

Each entity contains one or more identifiers, called attributes, which are used to access each 

entity of a given type.  Attributes serve a similar role to key fields in relational database tables. 

Attributes are non-numeric variables that are used to identify, categorize, and logically 

differentiate entities created from the same entity type definition.    Attribute values are visible to 
the model user as names and text strings.   Attributes support the modeling of references, 

relationships, collections, and aggregated reporting.   

Many attribute values are set when an entity is created and are never changed.  Other attributes 
may be changed during the simulation to record changes in the status or classification of the 

entity.   When they are used as identifiers, attributes serve the function of array dimensions or 
subscripts in traditional system dynamics.   

Collections 

The primary contents within an entity based model are collections (lists) of entities.  The platform 

automatically forms collections containing all of the entities of each type.  Aggregate values can 

be accessed for each collection.  The simplest aggregate is the COUNT of the number of items in 
the collection.  For each variable in the collection’s entity type, the user can access MIN, MAX, 
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MEAN, MEDIAN, STDEV, SUM, and PRODUCT aggregates.  These functions are accessible without 

any direct setup by the model builder and can be applied to any numerical variable. 

Aggregate functions summarize the properties of many entities in a collection for use by one 

entity elsewhere. Corresponding allocation functions provide the opposite mapping, as when 
many moviegoers compete for scarce seats in a theater, or many to many relations, as when 

multiple buyers seek a product from multiple suppliers. 

Collections can also be referenced as a subcollection, corresponding to subsets of attribute 
values.  The processing to support these references is also automatic.  An ENABLED attribute 

allows the option to have collections automatically exclude entities that have been dynamically 
deactivated.  An entity might be deactivated to represent death, bankruptcy, or simply departure 

from the system being studied. 

Entities can be members of multiple collections in different ways.  These subcollections are based 

on the value of one or more attributes.  For example, a model could have subcollections of all 

restaurants by City and other subcollections of restaurants by Style.  Multiple attributes can also 
be used to define subcollections that group restaurants by both City and Style.  The platform 

automatically manages membership in collections and subcollections when an entity is created or 
deleted or when a relevant attribute is changed.  For instance, each subcollection of active tasks 

by phase in a project model will change as tasks are started and completed. 

There are potentially many subcollections of entities with multiple attributes. During simulation, 
the platform calculates only those subcollections and aggregate values that are used in other 

calculations.  Any other aggregates are generated as needed during subsequent analysis of the 
results.  The platform only creates subcollections that have members. 

The second type of user defined collection is a “super-collection” that includes entities of more 
than one type.  This super-collection is based on common variables and attributes that must be 

shared by all of the member entities (and entity types).  For example, if entity types 

MANUFACTURER, RETAILER, and RESTAURANT all include BUSINESS in their definition, the 
aggregate functions for business may be used on any of the common fields.  If BUSINESS 

includes EMPLOYER in its definition and CITYGOV and STATEGOV also include EMPLOYER, then 
all of the covered entities are included in aggregates such as Number of Employees and Average 

Salary.   

Figure 2 shows an example of how a specific subcollection could be added to a model of 
restaurants.   The user selects which attribute or attributes to use in defining the subcollection.  

When the model is simulated, one subcollection is created for each combination that has at least 
one entity.  In this case, we select City and Style for groupings. 



VENTANA systems, inc.  9 

 

 

 Figure 2 

When a subcollection definition is created, the attributes used to identify groupings are added to 

the definition.   Aggregate values (e.g. COUNT, AVG, SUM, etc.) also become automatically 
available as needed. For example, the COUNT variable may be used to track or report the 

number of entities in each subcollection.  The sample diagram in Figure 3 also shows the 

aggregate function SUM(Revenue) which makes the total revenue of all the members easily 
available for reporting or for use in equations.  The diagram also illustrates the ability to use 

variables from each member entity to allocate customers between the restaurants.  The 
allocation method implied is this diagram is similar to the ALLOC function provided by Vensim 

(Ventana Systems, 2014). 
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Figure 3 

References 

A key advantage of a system dynamics model is the ability to represent causality as it exists 
between any parts of the system.  In order to connect parts of a disaggregated system, we 

support the ability for entities to create references (causal or informational links) to other 

entities.  Using these references, equations and other specifications for an entity are able to 
access the values of variables from any referenced entity.  For example, a business entity could 

access tax rates and unemployment information for its home state as well as a national tax rate.  
A person entity could reference peers in a network. Figure 4 shows three example entity types:  

Business, State, and National.  Reference attributes have been added to the business so that it 

could reference one corresponding entity for each of the other two types.  The desired 
information variables may be placed on the diagram and connected to the “Profit After Tax” 

variable.   
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Figure 4 

The equation dialog illustrates how these references are represented in equations.  In a manner 

similar to many object-oriented languages, the reference name and variable name are separated 
by a dot (period).  The equation editor provides auto-lookup and auto-completion capabilities to 

minimize the need for typing. These features also help reduce “typos” and undefined variable 
errors. 

In order to use a reference, each entity must have a value for the attribute(s) needed to find the 

correct target entity, such as a State or a Nation.  In this example, the reference would likely 
remain static for the entire simulation.  However, if a business were to relocate and change its 

home state, the platform would automatically adjust the references accordingly.   



VENTANA systems, inc.  12 

 

Figure 5 illustrates how a work assignment entity could be connected to related tasks and 

resources.  This type of structure makes it easy to have multiple resources work on a single task 
with separately managed allocations and productivity factors. 

 
Figure 5 

 

Referenced variables can be accessed either by copying or dragging them into a diagram or the 

equation editor.  Variables that are used in an equation are automatically represented on the 
diagram.  Links that are drawn using the diagram cause the referenced variables to appear in the 

list of causes while the user is typing.  The user can simply click on the item or use a keystroke 
to select the desired variable.  If the user has entered a reference name followed by a period, all 

variables defined for the referenced entity are presented in a drop-down list in the equation 

editor’s text box. 

Reference variables may be copied or dragged from diagrams, from the variable list for that 

entity type, or from a reference list that makes variables accessible in tree form.  The reference 
list may include references to several entities of the same type.   The panel in Figure 6 shows 

references from a SupplyChainMember to related SupplyChainMember entities, including 

Customer, Supplier, and itself.  This lookup tree helps the modeler use variables from an entity 
with a specific relationship. 
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Figure 6 

 

Figure 7 illustrates two additional types of references.  Restaurant[City, Style] represents the 

subcollection of all restaurants with the same City and Style as the individual restaurant.  This 

reference can be used to access aggregate information about competitors.  The reference to 
State is using the City attribute to reference the correct State entity.  
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Figure 7 

Relationship Entities 

Relationship entities are used to model the relationship between two or more other entities.  The 
Relationship entity must contain attribute variables that identify specific entities or collections of 

entities.  Stock and attribute variables control the relationship logic and may also be used to store 
relationship history or status. 

For example, a market with multiple buyers and suppliers might contain a collection of 

relationship entities that express which buyers are connected to which suppliers. If relationships 
are transient, one might think of the collection as an Order Book, with members that exist only as 

long as there is an open transaction between a buyer and a seller. 

Lists of relationship entities support efficient storage of relationships when entities may have 

relationships with multiple entities of a particular type but where the “array” of relationships is 

sparsely populated.  This is a significant improvement versus system dynamics arrays or 
spreadsheets which become very large as the number of members increases.  Relationships may 

involve two entities of the same type (e.g. Task to Task precedence) and may sometimes include 
more than two entities. 

Sparse Matrix Issues 

The sparse matrix problem may exist when the modeler needs components with multiple 

distinguishing attributes.  Current system dynamics tools are usually restricted to multi-

dimensional arrays.  When these arrays model real-world items, some or most of the array 
elements are not used – hence the term sparse array. 

For example, one can categorize vehicles by fuel type (gasoline, diesel, natural gas) and 
propulsion technology (internal combustion, hybrid, and fuel cell). But in practice, many elements 

of the matrix of vehicle combinations may not exist. 
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The precedence relationships among phases of a project, the network of origin-destination 

combinations of flights to airports, or the relationships in a supply chain are likely to be much 
sparser than the vehicle example.   

In project models, there may be many types of relationships among tasks and between tasks and 
other modeled entities, such as resources.  With traditional system dynamics, the prerequisite 

and other relationships can be expressed as arrays whose sizes increase geometrically with the 

number of tasks.    With a prerequisite entity, it is only necessary to allocate space for defined 
prerequisite relationships rather than all possible relationships.  Because pre-requisites can be 

defined using the full range of entity definition capabilities, it then becomes easy to define 
multiple types of prerequisites, each specified using attribute values specific to each prerequisite. 

Cohort Blending and Coflows 

Eberlein & Thompson (2012, 2013) discuss three approaches to the problem of dispersion in 

aging chains: discrete delays (conveyors), cohort tracking and shifting, and continuous cohorting. 

Each has potential drawbacks, including structural inflexibility, sawtooth behavior, and 
computational burden in models with fine time steps, respectively. 

An entity approach provides two additional options. First, the contents of the chain (e.g., people 
in a demographic model) may be modeled as individuals, identified by attributes indicating their 

ages. Depending on the scope of the model, this may provide for emergent behavior that cannot 

be represented in an aggregate equivalent, or it may impose unnecessary computation burdens 
to yield limiting stochastic behavior where individual dynamics are not of interest. 

Second, in cases where emergent behavior from individuals is not of interest, or mixing is a 
reasonable assumption, or representing a population would be burdensome, one can model 

cohorts as entities. The dynamic creation of entities avoids memory limitations and avoids the 
computation needed to shift arrays, thereby eliminating sawtooth behavior.  

Aging chains are often associated with coflows, parallel stock-flow structures that carry a key 

quantity (e.g., cars in a fleet) and associated qualities (fuel economy, weight, size), with the 
assumption that the qualities of the key quantities in the stock are well-mixed.  When new 

vehicles are added with time-varying values for the qualities, coflow equations adjust aggregate 
levels to account for these changes.   

An alternate approach facilitated by entities is to create a cohort entity for each lot of vehicles.  

This retains the well-mixed assumption while allowing for complex dynamics of vehicle attributes 
and avoiding cohort blending.  Aggregate qualities can be calculated readily from cohort 

subcollections.  Although the coflows in this example may be easy to calculate, the summation of 
cohort entities may be easier to explain to clients.  In cases where attributes of new vehicles are 

not adequately modeled as well-mixed, individual vehicles may be modeled as entities. Again, 

adding dynamics to the ancillary quality states is then straightforward. 
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Actions 

Policy models for complex systems will often require dynamically varying structure.  For example, 
a regional economic model might need to create businesses, disband business, and add new 

facilities.  Modelers may want to conditionally change attribute values for existing entities in order 
to change relationships, aggregation, or logical processing.  In still other cases, the model may 

need to sequence certain processing inside the context of a single time period (DT or Time Step).  

All of these capabilities are supported using a new construction called Actions. 

Actions are model components that provide support for certain discrete event and agent-based 

capabilities within the context of a continuous dynamic model.  Actions can be used to package 
transactions or flows that must occur together in order for an internally consistent change of the 

model state to occur; for example, double entry bookkeeping in a financial model.  Actions can 
simulate a wide range of operations such as creating new entities, making investments, placing 

orders, or finding oil. 

 During simulation, all required calculations are processed for every active entity.  Actions, 
however, are only processed when scheduled or invoked by other actions.  The scheduled 

execution time for an action may be any explicit time during the simulation.  Actions may also be 
scheduled to be processed at the beginning or end of every time period. 

A new action is defined by adding an Action to an existing entity type definition.  The action is 

not limited to the parent entity and may even create or delete entities.  The properties for an 
action are accessed through a dialog box and include: 

 Schedule:  Immediate, Start of Period, End of Period, Scheduled time, On Create 
 Conditions:  Logical expressions that determine whether the Action is executed  

 New Entity Type:  If an entity is to be created 
 Number to Create: 

 Action Name: 

 
Figure 8 includes the “Create New Restaurants” action.  In this case, the Action is defined for 

each City entity and uses a variety of factors to determine whether to add any new restaurants.   
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Figure 8 

The action can then be defined using a separate diagram.  If the action type is “Create Entity”, 
the diagram is pre-populated with the variables that need to be initialized (Stock and Attributes).  

The user may add variables to an action to calculate intermediate values.  Figure 9 illustrates 

how an action can use stock and flow diagrams to initialize the values of new entities. 
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Figure 9 

 

In this case, City would be initialized from the entity from which the Action was invoked.  The 

invoking action is able to set initial values for attributes and stocks using values or calculations 

available to it.  Distribution functions (Random number driven) can be used to establish the initial 
values. 

The “Create Restaurant” diagram shown in the example does not yet contain initialization 
equations.  The initialization equations can reference collections, subcollections, and any entity 

that can be linked using available information. 

In addition to a “Create Entity” action, another step may be involved for each new entity.    Every 

entity type may include actions that are automatically invoked by each new entity when it is 

created.  This is similar to a constructor in object oriented programming.   This kind of action 
may be used, for example, to ensure that all stocks and attributes have acceptable initial values.  

The “On Create” actions are most useful for entities loaded from databases or other external 
sources that may be missing critical information.  These actions can use conditional logic to 

determine how to compute initial values.  

Entity creation must often be modeled using statistical distributions.  For some modeling 
problems, it may be adequate to base these actions on distributions or probabilities established 

when the model is built or when data is provided.  For entities created dynamically during a 
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simulation, initial attributes may be assigned from dynamically updated distributions of its 

contemporary population of like entities (maintained and managed by the collection representing 
the active populations of respective entity types). The platform provides the option to use 

distributions calculated from collections so that newly created entities can be based on the best 
information at that point in time.  These capabilities are implemented as built-in functions.  

Actions are also able to delete or disable existing entities.  Entities are logically deleted from the 

active system structure, not physically deleted from memory.  Thus, they are available for 
reference if the model uses look-back logic to refer to past values of variables.  Create and 

Delete functionality may be combined in one action to merge existing entities or to split an entity 
into multiple entities.  Actions can also be linked to changes in entity information to update 

relationships and attribute settings. 

Team Modeling Support 

Typical models are monolithic—there is just one computer file, and it contains the model.  In 

practical terms, this is a severe restriction on the number of people who can productively 
collaborate to develop and use a model, and hence a restriction on the scope of problems 

addressable by a simulation analysis.  Software development environments have long had 
support for team efforts, with modularization and automated software builds. Similar tools have 

been developed around Vensim (Thompson & Bush 2005, Helfrich & Bush, 2008). 

In the new platform, each entity type definition is stored separately from all other entity type 
definitions – either in XML files or in multi-user database tables.  Entity type definitions are 

connected to other entity type definitions by name.  This allows the use of alternate 
implementations or versions of some or all of the entity type definitions.  The model background 

can be “filled-in” by various modelers or groups.  This modular design approach minimizes the 
difficulty of keeping multiple development groups “in sync”.   

Most model executions will include data tables that initialize some or all of the entities for a 

model.  These data tables may be modified or replaced by any stakeholder, expert, or observer 
with access to the model.  Furthermore, all of the logic is transparent (with the exception of user-

compiled functions, which we have yet to explain).  Multiple groups could make changes to the 
same entity as part of model analysis and experimentation.  

The platform keeps a version history of the model used to generate specific scenarios, to provide 

convenient backing up and analysis.  The concentration of entity logic in a small number of 
diagrams will make it easier for non-modeler subject matter experts to review and contribute to 

model logic.  Interested observers (with proper access authority) will be able to include alternate 
equations as part of scenario definition.  

Example Application 

As an example, consider the C-ROADS model (http://climateinteractive.org/simulations/C-ROADS, 
Sterman et al. 2012). It translates country emissions commitments into global climate outcomes 

and is used by decision makers in US and foreign agencies. It was developed in Vensim by a 
partnership of Climate Interactive, MIT, Ventana Systems and others. 

There are several challenges involved in construction of the model with traditional tools: 

1. Emissions scenario input may be entered at, or aggregated to, varying, possibly 

overlapping, regional levels. 

http://climateinteractive.org/simulations/C-ROADS
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2. Decision input is desired in different modes; executing code for modes of entry that are 

inactive is wasteful. 

3. Multiple team members manage different portions of the model, but the model must be 

run in its entirety. 

4. Quality control requires calibration and testing of subsystems in isolation. 

The C-ROADS model, implemented with the entity platform we describe, might look and work as 

follows. Notably, this is a traditional SD model, without agent detail, employing entities to provide 

modularity and flexibility. Nevertheless, it requires some of the same infrastructure needed to 
manage populations or networks of agents. 

The C-ROADS model would become a top-level Entity Type Definition, a.k.a. “the model”. This 
would contain other entity type definitions that organize the structure of the model into sectors. 

The top-level model entity might also contain global data and variables, not shown. 

Figure 10. C-ROADS model top-level entity, showing relationships among component entities: 

 

Team members could begin to assemble the model by first creating interfaces or templates for 
the entity type definitions needed, containing attributes and key variables that cross entity 

boundaries, but lacking internal dynamics. The construction of entities could then proceed in 
parallel, with individual team members taking responsibility for particular entities, and populating 

them with stocks, flows, data, etc. as needed to yield an executable model. 

Most of the sector entities would be singletons, i.e. entity types for which only a single instance 
will exist. For example, the current C-ROADS model contains global aggregate greenhouse gas 

cycles, climate, and other processes. There is no compelling reason to disaggregate these 
components. 
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On the other hand, the multiple countries and regions are designated as entities in a collection. 

There are two ways one might design this. In a simple case, where each country belongs to 
exactly one region, one could identify each Country Emissions entity with a region attribute, 

which would then be used to aggregate emissions by region. 

However, in some cases, it would be useful to have multiple overlapping regions. For example 

France might be a member of the OECD and of the EU for different accounting purposes. For 

this, we can use a relationship entity, Country Region Membership, to contain the mapping 
between countries and regions. It contains only attributes and has no dynamics (though it could 

contain variables if needed): 

Figure 11. Country Region Membership entity, showing Country and Region attributes: 

 

Because countries may belong to more than one region, there may be multiple instances of the 
Country Region Membership entity for a given country. For example: 

Country Region 

USA North America 

USA OECD 

France EU 

France OECD 

 

With attributes describing region-country relationships, it is then straightforward to aggregate 
country emissions (challenge 1) and to propagate regional decisions to countries (challenge 3). 

Adding a new country or region to the model would require users only to supply data needed to 

initialize the new entity, and an update to the Country Region Membership entity’s table of 
attributes identifying countries and regions. 

The Region Emissions entity uses the Country Region Membership relationship entity to 
aggregate Country Emissions. It contains a Gas attribute, with members like CO2, methane, N2O, 

…, so that the same entity type may be used to aggregate emissions of each distinct greenhouse 

gas, without writing any additional equations. 

Figure 12. Region Emissions entity: 
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In addition, the Region Emissions entity may contain a Region Emissions Policy entity type, which 

defines an emissions trajectory at a regional rather than country level, as an EU policy might 
apply to member countries. The Region Emissions Policy entity acquires an attribute, Region, 

from its parent, and defines a Region Emissions Trajectory (ordinarily this variable would have 
complex dynamics, but we do not elaborate upon its structure here). While it could stand alone, 

it is encapsulated within the region for clarity. 

The Country Entity generates emissions scenarios. It combines Historic Emissions, from data, 
with future scenarios generated by different methods. Two methods, Emissions by Intensity and 

Emissions by BAU, are calculated within entities that are members of the Country Entity. 
Depending on the Active Decision Mode (a variable switch), it may not be necessary to create 

both the Emissions by Intensity and Emissions by BAU entities, saving computation time if only 
one mode is needed (challenge 2).  

A third method derives country emissions from regional policy, using the Region Emissions 

Trajectory from the Regional Emissions Policy entity owned by an associated Region Emissions 
entity. As in the Region Emissions entity, the Country Region Membership relationship entity is 

used to determine which regional policy is mapped to a given country. 
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Figure 13 Regional Emissions 

Like the Region Emissions entity type, the Country Emissions entity type contains a Gas attribute, 
so that the same structure may be used for each distinct greenhouse gas, without writing any 

additional equations. 

Once country emissions have been simulated, and aggregated to regions, including global, the 

global biogeochemical cycles may be calculated. 

The Methane Cycle entity, for example, takes Natural Emissions from a data source, combines 
and combines them with Anthropogenic Emissions from the Region Emissions entity. Since only 

global emissions are needed to drive the methane cycle, it refers to the Anthropogenic Emissions 
from the Region Emissions entity, selecting the methane Gas instance for the global region. It 

then computes the dynamics of Atmospheric Methane. For visual simplicity and organization, the 
complexities of atmospheric chemistry that govern the variable atmospheric lifetime of methane 

are collapsed into the Hydroxyl Chemistry group. 
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Figure 14  Methane Cycle Entity 

The methane cycle, like other entity type definitions in the model, may be stored separately, 

facilitating version control and collaboration (challenge 4) via file-based synchronization or source 
control systems, or via storage of the entity and its history in a multiuser database. This would 

permit a person with relevant biogeophysical expertise to maintain the methane cycle, while 
other team members with economic or political expertise maintained country and region 

emissions entities. 

The methane cycle may be run in isolation from the remainder of the model. This permits 
extreme conditions or equilibrium testing, unencumbered by the overhead of executing the 

remainder of the model. It also permits rapid execution for automated recalibration of 
parameters within the Hydroxyl Chemistry group, in response to new data or structural changes 

to the model. Assembly of other portions of the model, like the Climate entity type definition, 

proceeds using the same concepts.  

A significant effort is required to maintain data on historic country emissions, stated future 

policies, global atmospheric GHG concentrations, temperature, and other variables. These inputs 
are best maintained in a database. The platform provides access to this data. The connection is 

facilitated because the structure of collections of entities with attributes naturally matches the 
structure of relational database tables. 

Conclusion 

This paper has analyzed the challenges facing the application of system dynamics to large and 
complex systems.  These challenges include the need to manage large, disaggregated systems 

and for the models to simulate dynamic changes in structure.  The cost and difficulty of building 
and using models of complex systems limits the number of attempts and also limits the 

effectiveness of those models that are developed.  The cost of hybrid methodologies is increased 

because of the need to develop technical interfaces as part of the modeling project. 
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We concluded that the fundamental shift to an object-oriented architecture required new 

development rather than structure superimposed on existing system dynamics toolsets.  This 
paper provides an overview of a new platform for building modular models of complex dynamic 

systems.  It enables new techniques and improved approaches to the representation of real 
world systems.  We expect that modelers will find innovative ways to combine these capabilities 

in ways to expand and improve the scope of system dynamics.  
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